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ABSTRACT

We extend classical theorems of Rényi by finding the distributions of the

numbers of both weak and strong left-to-right maxima (a.k.a. outstand-

ing elements) in words over a given alphabet and in permutations of a

given multiset.

1. Introduction

Given a sequence w = w1w2 . . . wn of members of a totally ordered set, we

say j is a strongly outstanding element of w if whenever i < j we have

wi < wj . In this case we call wj a strongly outstanding value. We say

j is a weakly outstanding element if wi ≤ wj whenever i < j, and call

wj a weakly outstanding value. In this paper we will explore the contexts

in which w is a permutation, a multiset permutation, or a word over some

finite alphabet. A famous theorem of Rényi [12] (see also [1]) states that the

number of permutations of [k] with r strongly outstanding elements is equal
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to the number of such permutations with r cycles, the latter being given by
[

k
r

]

, the unsigned Stirling number of the first kind. In this paper we investigate

additional properties of the outstanding elements and values of permutations,

and extend them to multiset permutations and words on [k] = {1, 2, . . . , k}. An

interesting sidelight to our results is that we obtain a proof of Gauss’s celebrated

2F1 evaluation by comparing two forms of one of our generating functions, in

Section 5 below.

2. Summary of results

2.1. Multiset permutations. For permutations1 we have the following re-

sults.

Theorem 1: Let M = {1a1 , 2a2 , . . . , kak} be a multiset with N =

a1 + a2 + · · · + ak, and let f(M, r) denote the number of permutations of M

that contain exactly r strongly outstanding elements. Then

(1)

FM (x) =
def

∑

r

f(M, r)xr

=
(N − 1)!akx

a1!a2! · · · ak!

k−1
∏

i=1

(

1 +
aix

N − (a1 + a2 + · · · + ai)

)

.

This result is also found in [4].

Corollary 1: The generating function for the probability p(M, r) that a ran-

domly selected permutation of M has exactly r strongly outstanding elements

is

(2) PM (x) =
def

∑

r

p(M, r)xr =
akx

N

k−1
∏

i=1

(

1 +
aix

N − (a1 + a2 + · · · + ai)

)

,

and the average number of strongly outstanding elements among permutations

of M is

(3) P ′
M (1) =

k
∑

i=1

ai

ai + ai+1 + · · · + ak
.

1 Note that for permutations, all outstanding elements and values are strongly outstanding.
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Theorem 2: The generating function for the number g(M, t) of permutations

of M that contain exactly t weakly outstanding elements is given by

(4)

GM (x) =
def

∑

t

g(M, t) = φN,a1
(x)φN−a1,a2

(x) · · ·φN−a1−···−ak−2,ak−1
(x)xak

where

φN,a(x) =

a
∑

m=0

(

N − m − 1

a − m

)

xm.

Corollary 2: The average number of weakly outstanding elements among

permutations of M is

(5)

k
∑

i=1

ai

ai+1 + ai+2 + · · · + ak + 1
.

Corollary 3: Let A = maxi{ai}. The amount by which the average num-

ber of weakly outstanding elements exceeds the average number of strongly

outstanding elements is ≤ π2

6 A(A − 1).

2.2. Words. The next theorem involves Stirling numbers of the second kind,

denoted by
{

n
m

}

. This is defined as the number of ways to partition a set of n

elements into m nonempty subsets.

Theorem 3: The number f(n, k, r) of n-letter words over an alphabet of k

letters which have exactly r strongly outstanding elements is given by

(6) f(n, k, r) =
∑

m

(

k

m

)[

m

r

]{

n

m

}

,

and the average number of strongly outstanding elements among such words is

Hk = 1 +
1

2
+

1

3
+ · · · +

1

k
+ o(1) (n → ∞).

Theorem 4: The generating function for the number g(n, k, t) of n-letter words

over an alphabet of k letters, which have exactly t weakly outstanding elements,

is given by

(7) Gk(n, x) =
def

∑

t

g(n, k, t)xt =
k−1
∑

t=0

(−1)k−1−t(x + t)n

(

k − 1

t

)(

x + t − 1

k − 1

)

,
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and the average number of weakly outstanding elements among these words is

n

k
+ Hk−1 + O

((

k − 1

k

)n)

.

Next we introduce the notion of a template for words on [k]. A permutation

of 5 letters matches the template ‘Y N ∗ Y Y ’, for example, if 1, 4, and 5 are

outstanding elements, 2 is not an outstanding element, and 3 is unconstrained.

For example the permutation 21457 matches this template. In this case we think

of the letters of the template Y , N , * as representing yes, no, and unconstrained,

respectively. We generalize the Y and N constraints to S, W , S, and O; where

S indicates a strongly outstanding element, W a weakly outstanding element,

S indicates the absence of a strongly outstanding, and O the absence of an

outstanding element. We provide an algorithm for producing the generating

function for the number of words that match a given template. When the word

is a permutation, we have

Theorem 5: Let τ be a given template of length at most n, and let τj denote

the letter that appears in position j, counting from the left, of the template

τ . Since every element of a permutation is either strongly outstanding or not

outstanding, the letters of τ are chosen from {Y, N, ∗}. The probability that a

permutation of at least n letters matches the template τ is

(8)
∏

j:τj=‘N’

(

1 −
1

j

)

∏

j:τj=‘Y’

1

j
.

The corresponding result for words is

Theorem 6: Let τ be a word on {S, W, ∗, S, O}. Suppose

F (τ, x) =
∑

k≥1

f(k, τ)xk

is the ordinary generating function for f(k, τ), the number of words over the

alphabet [k] that match the template τ . Consider the adjunction of one new

symbol, A ∈ {S, W, ∗, S, O}, at the right end of τ . The generating function,

F (τA, x) can be obtained from F (τ, x) by applying an operator ΩA, i.e.,

F (τA, x) = ΩAF (τ, x),
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where

ΩSF (τ, x) = xF (τ, x)/(1 − x),(9)

ΩW F (τ, x) = F (τ, x)/(1 − x),(10)

Ω∗F (τ, x) = x
d

dx
F (τ, x),(11)

ΩSF (τ, x) =
(

x
d

dx
−

x

1 − x

)

F (τ, x), and(12)

ΩOF (τ, x) =
(

x
d

dx
−

1

1 − x

)

F (τ, x).(13)

3. Strongly outstanding elements of multiset permutations

In this section we establish Theorem 1 and its corollaries.

Given a multiset M = {1a1 , 2a2 , . . . , kak}, let N =
∑

j aj . We construct the

permutations of M that have exactly r strongly outstanding elements as follows.

We have N slots into which we will put the N elements of M to make these

permutations.

Take the a1 1’s that are available and place them in some a1-subset of the

N slots that are available. There are two cases now. If the set of slots that we

chose for the 1’s did not include the first (leftmost) slot, then we can fill in the

remaining slots with any permutation of the multiset M/1a1 that has exactly

r strongly outstanding elements. On the other hand, if we did place a 1 into

the first slot, then after placing all of the 1’s, the remaining slots can be filled

in with any permutation of the multiset M/1a1 that has exactly r − 1 strongly

outstanding elements.

Let f(M, r) denote the number of permutations of the multiset M that have

exactly r strongly outstanding elements. The argument in the preceding para-

graph shows that

f(M, r) =
(

(

N

a1

)

−

(

N − 1

a1 − 1

)

)

f(M/1a1 , r) +

(

N − 1

a1 − 1

)

f(M/1a1, r − 1).

When we define

FM (x) =
∑

r

f(M, r)xr ,
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we have the recurrence

FM (x) =

(((

N

a1

)

−

(

N − 1

a1 − 1

))

+

(

N − 1

a1 − 1

)

x

)

FM/1a1 (x)

=

((

N − 1

a1

)

+

(

N − 1

a1 − 1

)

x

)

FM/1a1 (x)

This shows that the generating polynomial resolves into linear factors over the

integers. Indeed we get the explicit form

FM (x) =

((

N − 1

a1

)

+

(

N − 1

a1 − 1

)

x

) ((

N − a1 − 1

a2

)

+

(

N − a1 − 1

a2 − 1

)

x

)

. . .

=

k
∏

i=1

((

N − a1 − a2 − · · · − ai−1 − 1

ai

)

+

(

N − a1 − a2 − · · · − ai−1 − 1

ai − 1

)

x

)

=
(N − 1)!akx

a1!a2! . . . ak!

k−1
∏

i=1

(

1 +
aix

N − (a1 + a2 + · · · + ai)

)

This gives us Theorem 1. Its corollaries follow by obvious calculations. We note

that this result was previously obtained by Clément, Flajolet, and Vallée [4] in

the context of binary search trees.

Since the generating polynomial has real zeros only, the probabilities

{p(M, r)} are unimodal and log concave. By Darroch’s Theorem [5], the value

of r for which p(M, r) is maximum differs from P ′
M (1) of (3) above by at most 1.

4. Weakly outstanding elements of multiset permutations

Next we prove Theorem 2.

Consider g(M, t), the number of permutations of M = {1a1 , 2a2 , . . . , kak} that

have exactly t weakly outstanding elements, and GM (x) =
∑

t g(M, t)xt. To

find g(M, t), suppose the permutation begins with a block of exactly m ≥ 0 1’s.

Since the value that follows the last 1 in the block is not available for a 1, there

remain N − m − 1 slots into which the remaining 1’s can be put, in
(

N−m−1
a1−m

)

ways. Once all of the 1’s have been placed, if the remaining permutation of the

multiset M/1a1 has exactly t−m weakly outstanding elements then the whole
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thing will have t weakly outstanding elements. Hence we have

g(M, t) =
∑

m≥0

(

N − m − 1

a1 − m

)

g(M/1a1, t − m),

if M/1a1 is nonempty, whereas if only M = 1a1 , then g(M, t) = δt,a1
. If we

multiply by xt and sum on t we find that

GM (x) =
{

∑

m≥0

(

N − m − 1

a1 − m

)

xm
}

GM/1a1 (x),

except that if only M = 1a1 , then GM (x) = xa1 . So if we write

φN,a(x) =

a
∑

m=0

(

N − m − 1

a − m

)

xm,

then we have

(14) GM (x) = φN,a1
(x)φN−a1,a2

(x) · · · φN−a1−···−ak−2,ak−1
(x)xak .

This gives (4).

The two sums φN,a(1) =
(

n
a

)

and φ′
N,a(1) =

(

n
a

)

/(n−a+1) are elementary, and

imply that φ′
N,a(1)/φN,a(1) = 1/(n − a + 1). Then logarithmic differentiation

of (14) and evaluation at x = 1 shows that the average number of weakly

outstanding elements in permutations of M is

(15)
k

∑

i=1

ai

ai+1 + ai+2 + · · · + ak + 1
.

Let A = maxi{ai}. If we compare (15) and (3) we find that the amount by

which the average number of weakly outstanding elements exceeds the average

number of strongly outstanding elements is

k
∑

i=1

(

ai

ai+1 + ai+2 + · · · + ak + 1
−

ai

ai + ai+1 + · · · + ak

)

=

k
∑

i=1

ai(ai − 1)

(ai+1 + ai+2 + · · · + ak + 1)(ai + ai+1 + · · · + ak)

≤ A(A − 1)

k
∑

i=1

1

(k − i + 1)2
≤

π2

6
A(A − 1).

This estimate is best possible when A = 1, i.e., when every element occurs just

once.
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5. Strongly outstanding elements of words

Next we investigate f(n, k, r), the number of n-letter words over an alphabet

of k letters that have exactly r strongly outstanding elements. In so doing we

will prove Theorem 3.

Note first that the number of strongly outstanding elements of such a word

depends only on the permutation of the distinct letters appearing in the word

that is achieved by the first appearances of each of those letters, because a value

j can be strongly outstanding in a word w only if it is the first (i.e., leftmost)

occurrence of j in w.

Hence, associated with each n-letter word w over an alphabet of k letters

which has exactly r strongly outstanding elements there is a triple (S,P , σ)

consisting of

1. a subset S ⊆ [k], which is the set of all of the distinct letters that actually

appear in w, and

2. a partition P of the set [n] into m = |S| classes, namely, the i-th class of P

consists of the set of positions in the word w that contain the i-th letter of

S, and

3. a permutation σ ∈ Sm, m = |S|, with r strongly outstanding elements. This

is the sequence of first appearances in w of each of the k letters that occur

in w.

Conversely, if we are given such a triple (S,P , σ), we uniquely construct an

n-letter word w over [k] with exactly r strongly outstanding elements as follows.

First arrange the classes of the partition P in ascending order of their smallest

elements. Then permute the set S according to the permutation σ, yielding a

list S̃. In all of the positions of w that are described by the first class of the

partition P (i.e., the class in which the letter ‘1’ lives) we put the first letter of

S̃, etc., to obtain the required word w.

Thus the number of words that we are counting is equal to the number of

these triples, viz.

(16) f(n, k, r) =
∑

m

(

k

m

)[

m

r

]{

n

m

}

.

It is noteworthy that three flavors of “Pascal-triangle-like” numbers occur in

this formula.
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Let ρ(n, k) denote the average number of strongly outstanding elements

among the n-letter words that can be formed from an alphabet of k letters.

To find ρ(n, k) for large n, we have first that

∑

r

f(n, k, r) =
∑

m

(

k

m

){

n

m

}

∑

r

[

m

r

]

=
∑

m

(

k

m

){

n

m

}

m!

∼
∑

m

(

k

m

){

n

m

}

m! ∼
∑

m

(

k

m

)

nm ∼ nk,

for large n, where we have used the facts that
{

n
m

}

∼ nm/m! and
∑

r

[

m
r

]

= m!.

Similarly,

∑

r

rf(n, k, r) =
∑

m

(

k

m

){

n

m

}

∑

r

r

[

m

r

]

=
∑

m

(

k

m

){

n

m

}

m!Hm

∼
∑

m

(

k

m

){

n

m

}

m!Hm ∼
∑

m

(

k

m

)

nmHm ∼ nkHk,

where we have used the additional fact that
∑

r r
[

m
r

]

= m!Hm. If we divide

these last two equations we find that

lim
n→∞

ρ(n, k) = Hk = 1 +
1

2
+

1

3
+ · · · +

1

k
.

The proof of Theorem 3 is complete.

From (16) we can use the standard generating functions for the two kinds of

Stirling numbers to show that

∑

r,n

f(n, k, r)yrtn−r =

k
∏

j=1

(

1 +
y

1 − jt

)

.

But from (16) we also have

∑

r,n

f(n, k, r)yrtn−r =
∑

`,r

(

k

`

)[

`

r

]

(y

t

)r ∑

n

{

n

`

}

tn

=
∑

`,r

(

k

`

)[

`

r

]

(y

t

)r t`

(1 − t)(1 − 2t) . . . (1 − `t)

=
∑

`

(

k

`

) `−1
∏

j=0

(y

t
+ j

) t`

(1 − t)(1 − 2t) . . . (1 − `t)

=
∑

`

(

k

`

)

∏̀

j=1

y + (j − 1)t

1 − jt
.
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Comparison of these two evaluations shows that we have found and proved

the following identity:

(17)
∑

`

(

k

`

)

∏̀

j=1

y + (j − 1)t

1 − jt
=

k
∏

j=1

(

1 +
y

1 − jt

)

.

But Gauss had done it earlier, since it is the evaluation of his well known

2F1

[

−k y/t

1 − 1/t

∣

∣

∣

∣

1

]

.

6. A calculus of templates

6.1. Templates and permutations. In this section we prove Theorems 5

and 6. We begin by establishing (8), which appeared first in [13].

This result is a generalization of a theorem of R. V. Kadison [9], who dis-

covered the case where the template is ‘NN· · ·NY’, and proved it by the sieve

method. To make this paper self-contained, we include a proof of (8).

Our proof is by induction on n. Suppose it has been proved that, for all

templates τ of at most n−1 letters, the number of permutations of n−1 letters

that match τ is correctly given by (8), and let τ be some template of ≤ n letters.

If in fact the length of τ is < n then the formula (8) gives the same result as it

did when applied to (n − 1)-permutations, which is the correct probability.

In the case where the length of τ is n and the rightmost letter of τ is ‘Y’, every

matching permutation σ must have σ(n) = n. Hence the number of matching

permutations is (n − 1)!pn−1(τ
′), where τ ′ consists of the first n − 1 letters of

τ , which is equal to n!pn(τ), proving the result in this case.

In the last case, where the length of τ is n and the rightmost letter of τ is ‘N’,

the probability of a permutation match must be pn−1(τ
′)(1 − 1/n), since this

case and the preceding one are exhaustive of the possibilities and the preceding

one had a probability of pn−1(τ
′)/n. But this agrees with formula (8) for this

case, completing the proof of the theorem.

6.2. Templates on words. Next we include results for words that are analo-

gous to those we found for permutations. A preview of the kind of results that

we will get is the following. Suppose F (τ, x) =
∑

k≥1 f(k, τ)xk, where f(k, τ)

denotes the number of words over the alphabet [k] whose length is equal to

the length of the template, and which match the template. Then consider the
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adjunction of one new symbol, let’s call it A, at the right end of τ . Then we will

show that the new generating function, F (τA, x) can be obtained from F (τ, x)

by applying a certain operator ΩA. That is,

F (τA, x) = ΩAF (τ, x).

The operator ΩA will depend only on the letter A that is being adjoined to the

template τ .

Hence, to find the generating function for a complete template τ , we begin

with F (∅, x) = 1/(1− x), and we read the template τ from left to right. Corre-

sponding to each letter in τ we apply the appropriate operator Ω. When we have

finished scanning the entire template the result will be the desired generating

function for τ .

The letters that we will allow in a template τ = τ1τ2 . . . τl are {S, W, ∗, S, O}.

Their meanings are that if w = w1 . . . wl is a word of length l over the alphabet

[k] then for w to match the template it must be that wi is

1. a strongly outstanding value whenever τi = S, or

2. a weakly outstanding value whenever τi = W , or

3. unrestricted whenever τi = ∗, or

4. not a strongly outstanding value whenever τi = S, or

5. neither a weakly nor a strongly outstanding value whenever τi = O.

Let’s consider what happens to the count of matching words when we adjoin

one of these letters to a template whose counting function is known. Let f(k, τ)

denote the number of words of length l = length(τ), on the alphabet [k] that

match the template τ .

1. If w is one of the words counted by f(k, τS), and if we delete its last letter,

we obtain one of the words that is counted by f(i, τ) for some 1 ≤ i < k,

and consequently

f(k, τS) =

k−1
∑

i=1

f(i, τ).

If F (τ, x) =
∑

k≥1 f(k, τ)xk, then we have

F (τS, x) =
x

1 − x
F (τ, x).

Thus we have found the operator ΩS , and it is defined by ΩSF (x) = xF (x)
1−x .

This is equation (9).
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2. Similarly, if w is one of the words counted by f(k, τW ), and if we delete its

last letter, we obtain one of the words that is counted by f(i, τ) for some

1 ≤ i ≤ k, and consequently

f(k, τW ) =

k
∑

i=1

f(i, τ).

If F (τ, x) =
∑

k≥1 f(k, τ)xk, then we have

F (τW, x) =
F (τ, x)

1 − x
.

Thus we have found the operator ΩW , and it is defined by ΩW F (x) =

F (x)/(1 − x). This is (10).

Since the argument in each case is easy and similar to the above we will simply

list the remaining three operators, equations (11), (12), and (13), as follows:

Ω∗F (x) = x
d

dx
F (x)

ΩSF (x) =

(

x
d

dx
−

x

1 − x

)

F (x)

ΩOF (x) =

(

x
d

dx
−

1

1 − x

)

F (x)

The successive applications of these operators can be started with the gener-

ating function for the empty template,

F (∅, x) =
1

1 − x
.

Thus, to find the generating function for some given template τ , we begin

with the function 1/(1− x), and then we read one letter at a time from τ , from

left to right, and apply the appropriate one of the five operators that are defined

above.

For example, how many words of length 3 over the alphabet [k] match the

template τ = S ∗ S? This is the coefficient of xk in

F (S ∗ S, x) = ΩSΩ∗ΩS
1

1 − x
=

(

x
d

dx
−

x

1 − x

) (

x
d

dx

) (

x

1 − x

)

1

1 − x

=
x + 3x2

(1 − x)4

The required number of 3-letter words over a k letter alphabet that match the

template τ is the coefficient of xk in the above. Since these generating functions
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will always be of the form P (x)/(1−x)r, with P a polynomial, we note for ready

reference that

[xk]

{

∑

j ajx
j

(1 − x)r

}

=
∑

j

aj

(

r + k − j − 1

r − 1

)

.

In the example above we have r = 4, a1 = 1, a2 = 3, so

f(k, S ∗ S) =

(

k + 2

3

)

+ 3

(

k + 1

3

)

.

7. Weakly outstanding elements of words

Finally we prove Theorem 4.

Let g(n, k, t) denote the number of n-letter words over the alphabet [k] which

have exactly t weakly outstanding elements. Consider just those words w that

contain exactly m 1’s, m < n. If w begins with a block of exactly l 1’s, 0 ≤ l ≤ m

then by deleting all m of the 1’s in w we find that the remaining word is one

with n − m letters over an alphabet of k − 1 letters and it has exactly t − l

weakly outstanding elements. Thus we have the recurrence

g(n, k, t) =

n−1
∑

m=0

(

n − l − 1

m − l

)

g(n − m, k − 1, t − l) + δt,n.

When we set Gk(n, x) =
∑

t g(n, k, t)xt, we find that

(18)

Gk(n, x) =

n−1
∑

m=0

k
∑

l=0

(

n − l − 1

m − l

)

xlGk−1(n−m, x)+xn (n, k ≥ 1; G0(n, x) = 0).

To discuss this recurrence, let ∆ = ∆x be the usual forward difference operator

on x, i.e., ∆xf(x) = f(x + 1) − f(x). Then from the recurrence above we

discover that

G1(n, x) = xn; G2(n, x) = ∆xxn(x − 1); G3(n, x) = ∆2
xxn

(

x − 1

2

)

.

This leads to the conjecture that

Gk(n, x) = ∆k−1
x

{

xn

(

x − 1

k − 1

)

}

=

k−1
∑

t=0

(−1)k−1−t(x + t)n

(

k − 1

t

)(

x + t − 1

k − 1

)

.



180 AMY N. MYERS AND HERBERT S. WILF Isr. J. Math.

To prove this it would suffice to show that the function Gk(n, x) above satisfies

the recurrence (18). If we substitute the conjectured form of Gk into the right

side of (18) we find that the sums over l and m can easily be done, and the

identity to be proved now reads as

k−2
∑

t=0

(−1)k−t

(

k − 2

t

)(

x + t − 1

k − 2

)

(x + t)

t + 1
((x + t + 1)n − xn) + xn

=

k−1
∑

t=0

(−1)k−1−t(x + t)n

(

k − 1

t

)(

x + t − 1

k − 1

)

.

If we replace the dummy index of summation t by t − 1 on the left side, the

identity to be proved becomes

k−1
∑

t=1

(−1)k−t−1

(

k − 2

t − 1

)(

x + t − 2

k − 2

)

(x + t − 1)

t
((x + t)n − xn) + xn

=

k−1
∑

t=0

(−1)k−1−t(x + t)n

(

k − 1

t

)(

x + t − 1

k − 1

)

.

It is now trivial to check that for 1 ≤ t ≤ k−1, the coefficient of (x+ t)n on the

left side is equal to that coefficient on the right. If we cancel those terms and

divide out a factor xn from what remains, the identity to be proved becomes

−
k−1
∑

t=1

(−1)k−t−1

(

k − 2

t − 1

)(

x + t − 2

k − 2

)

(x + t − 1)

t
+ 1 = (−1)k−1

(

x − 1

k − 1

)

.

The sum that appears above is a special case of Gauss’s original 2F1[a, b; c|1]

evaluation, and the proof of (7) is complete. A straightforward calculation now

shows that the average number of weakly outstanding elements among n-letter

words over the alphabet [k] is

=
n

k
+ Hk−1 + O

((

k − 1

k

)n)

.

8. Related results

In the literature, the outstanding elements and values of sequences go by vari-

ous names: éléments salients (Rényi), left-to-right maxima, records, and

others; and appear in several different contexts and results, for example:
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It is well-known that the probability of obtaining at least r strongly out-

standing elements in a sequence X1, X2, . . . , Xn of n independent, identically

distributed, continuous random variables approaches 1 as n → ∞. (Glick’s

survey [7], for example, contains this result and those that follow in this para-

graph and the next.) Let Yi = 1 if i is a strongly outstanding element of such

a sequence, and 0 otherwise. The expected value is E[Yi] = 1/i and the vari-

ance is V [Yi] = 1/i − 1/i2. The number of strongly outstanding elements in a

sequence of continuous iid random variables is therefore Ri =
∑

i Yi with ex-

pectation E[Ri] =
∑n

i=1 1/i and variance V [Ri] =
∑n

i=1 1/i −
∑n

i=1 1/i2. Note
∑n

i=1 1/i − ln(n) → Euler’s constant = 0.5772 . . . , and
∑n

i=1 1/i2 → π2/6 =

1.6449 . . . for n → ∞.

Let Nr denote the r-th outstanding element in a sequence of n iid continu-

ous random variables. Then N1 = 1, E[Nr] = ∞ for r ≥ 2, and E[Nr+1 −

Nr] = ∞ as well. The probability P [N2 = i2, N3 = i3, . . . , Nr = ir] =

1/(i2 − 1)(i3 − 1) . . . (ir − 1)ir for 1 < i2 < i3 < · · · < ir. The probability

that an iid sequence of n continuous random variables has exactly r strongly

outstanding elements is
[

k
r

]

/(r − 1)! for large n.

Chern and Hwang [3] consider the number fn,k of k consecutive records

(strongly outstanding elements) in a sequence of n iid continuous random vari-

ables. They improve upon known results for the limiting distribution of fn,2.

In particular, they show fn,k is asymptotically Poisson for k = 1, 2, and this is

not the case for k ≥ 3. They give the probability generating function for fn,2,

and observe that the distribution of fn,2 is identical to that for the number

of fixed points j in a random permutation of [n] for 1 ≤ j < n. They give

a recurrence for the probability generating function for fn,k, and compute the

mean and variance for this number.

Are there similar results for discrete distributions? Prodinger [11] considers

left-to-right maxima in both the strict (strongly outstanding) and loose (weakly

outstanding) senses for geometric random variables. He finds the generating

function for the probability that a sequence of n independent geometric random

variables (each with probability pqv−1 of taking the positive integer value v,

where q = p − 1) has k strict left-to-right maxima. This probability is the

coefficient of znyk in

F (z, y) =
∏

k≥1

(

1 +
yzpqk−1

1 − z(1 − qk)

)

.
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For loose left-to-right maxima the analogous generating function is

∏

k≥0

1 − z(1 − qk)

1 − z + zqk(1 − py)
.

In this paper, Prodinger also finds the asymptotic expansions for both the

expected numbers of strict and loose left-to-right maxima, and the variances

for these numbers. He does all of the above for uniform random variables as

well.

Knopfmacher and Prodinger [10] consider the value and position of the r-th

left-to-right maximum for n geometric random variables. The position is the

r-th strongly outstanding element, and the value is that taken by the random

variable in that position (again the value v is taken with probability pqv−1,

where q = 1 − p). For the r-th strong left-to-right maximum, the asymptotic

formulas for value and position are r
p and 1

(r−1)!

(

p
q log 1

q
n
)r−1

, respectively. For

the rth weak left-to-right maximum, the value and position are asymptotically
rq
p and 1

(r−1)!

(

p log 1

q
n
)r−1

. These results are obtained by first computing the

relevant generating functions.

A number of additional properties of outstanding elements of permutations

are in Wilf [13].

Key [8] describes the asymptotic behavior of the number of records (strongly

outstanding elements) and weak records (weakly outstanding elements) that

occur in an iid sequence of integer valued random variables.

When the sequence w1, w2, . . . , wn under consideration is a random permuta-

tion on n letters, then the expected number of strongly outstanding elments is

the nth harmonic number Hn = 1+ 1
2 + 1

2 + · · ·+ 1
n . The variance is Hn = H

(2)
n ,

where H
(2)
n = 1+ 1

4 + · · ·+ 1
n2 denotes the n-th harmonic number of the second

order.

Banderier, Mehlhorn, and Brier [2] show that the average number of left-to-

right maxima (strongly outstanding elements) in a partial permutation is

log(pn) + γ + 2 1−p
p +

(

1
2 + 2(1−p)

p2

)

1
n + O

(

1
n2

)

where γ = 0.5772 . . . is Euler’s

constant. To obtain a partial permutation, we begin with the sequence

1, 2, . . . , k and select each element with probability p; then take one of the

(pn)! permutations of [pn] uniformily at random and let it act on the selected

elements, while the nonselected elements stay in place.

Foata and Han [6] investigate the (right-to-left) lower records of signed

permutations. A signed permutation is a word w = w1w2 . . . wn for which
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the letters wi are positive or negative integers, and |w1||w2| . . . |wn| is a permu-

tation of {1, 2, . . . , n}. A lower record of such a word is a letter wi such that

wi < wj for all j with i+1 ≤ j ≤ n. The authors consider the signed subword

obtained by reading the lower records of w from left to right; and derive gener-

ating functions for signed permutations in terms of signed subwords, numbers

of positive and negative letters in signed subwords, and other statistics.
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